Constructing new periodic exact solutions of evolution equations.
نویسندگان
چکیده
For the nonlinear Schrödinger equation, the Korteweg-de Vries equation, and the modified Korteweg-de Vries equation, periodic exact solutions are constructed from their stationary periodic solutions, by means of the Bäcklund transformation. These periodic solutions were not written down explicitly before to our knowledge. Their asymptotic behavior when t-->-infinity is different from that when t-->infinity. Near t=0, the spatial-temporal pattern can change abruptly, and rational solitons can appear randomly in space and time. They correspond to new types of "homoclinic orbits" due to different asymptotic behaviors in time.
منابع مشابه
New Exact Travelling Wave Solutions for Some Nonlinear Evolution Equations
In this paper sub-equation method with symbolic computational method is used for constructing the new exact travelling wave solutions for some nonlinear evolution equations arising in mathematical physics namely,the WBK, Z–K equation, and coupled nonlinear equations . As a result,the traveling wave solutions are obtained include, solitons, kinks and plane periodic solutions. It worthwhile to me...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملFormal Linearization and Exact Solutions of Some Nonlinear Partial Differential Equations
Abstract An efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced. The method can be applied to nonintegrable equations as well as to integrable ones. Examples include multisoliton and periodic solutions of the famous integrable evolution equation (KdV) and the new solutions, describing interaction of solitary waves of nonintegr...
متن کاملExact solutions for nonlinear partial differential equations by using the extended tanh - method Mahmoud
The tanh method is a powerful solution method; various extension forms of the tanh method have been developed with a computerized symbolic computation and is used for constructing the exact travelling wave solutions, of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks and plane periodic solutions. First a power series in tanh was used as an ansatz t...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملConstructing Infinite Number of Exact Traveling Wave Solutions of Nonlinear Evolution Equations Via an Extended Tanh–Function Method
Abstract: Two class of fractional type solutions of Riccati equation are constructed from its three known solutions. These fractional type solutions are used to propose an approach for constructing infinite number of exact traveling wave solutions of nonlinear evolution equations by means of the extended tanh–function method. The infinite number of exact traveling wave solutions of the long–sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 60 4 Pt A شماره
صفحات -
تاریخ انتشار 1999